List of Contents

Contents	Page
Dedication	3
Acknowledgement	4
List of Contents	5
List of Tables	8
List of Figures	9
Nomenclature	10
Abstract	11
Chapter one: Introduction	14
1.1 Background	15
1.2 Research Problem	15
1.3 Research Statement	18
1.4 Research Question	18
1.5 Aim and Objectives	18
1.6 Approach and Methodology	18
1.7 Thesis Outline	19
Chapter Two: Literature Review	20
2.1 Chemistry of Chlorination	21
2.2 Fate of Chlorine in Distribution Systems	22
2.2.1 Bulk Chlorine Decay	23
2.2.2 Wall Chlorine Decay	25
2.3 Disinfection of Drinking Water by Chlorine	25
2.4 Factors Affecting Disinfection Efficiency	26
2.4.1 Water Quality	26
2.4.2 Chlorine Concentration and Contact Time	27
2.4.3 pH and Temperature	28
2.5 Chlorine Residual Determination	29
2.5.1 Iodometric Method	29
2.5.2 Amperometric Titration Method	30
2.5.3 N, N-diethyl-p-phenylenediamine (DPD) Methods	31
2.6 Bacteriological Analysis	31
2.6.1 Membrane Filtration Method	32
2.6.2 Multiple-tube Fermentation Method	32
Chapter Three: Approach and Methodology	34
3.1 Filed work	35
3.1.1 Study Area	35
3.1.2 Field Visits	35
3.1.3 Selecting Sampling Points	36
3.1.4 Using Software	36
3.1.5 Step Chlorination	36
3.2 Experimental Laboratory Approach	36
3.2.1 Instrumentation	36
3.2.2 Methods of Analysis	37

3.2.2.1 EC	37
3.2.2.2 pH	37
3.2.2.3 Temperature	37
3.2.2.4 Turbidity	37
3.2.2.5 Fecal Coliform	38
3.2.2.6 TOC	39
3.2.2.7 (Mg, Ca, Mn, Fe)	40
3.3 Monitoring the Residual Chlorine	40
3.3.1 Bulk Chlorine Decay Determination	40
3.3.2 Residual Free Chlorine Determination in the Network	41
Chapter 4: Study Area	42
4.1 Study Area	43
4.1.1 Ramallah	43
4.1.2 Palestinian Owned Wells	44
4.1.3 Purchased Water Resources	47
4.1.4 Kufor Malek Town	48
4.2 Chlorination Processes	48
Chapter Five: Result and Discussion	49
5.1 Source Assessment	50
5.1.1 Quality of the Raw Water	50
5.1.2 Bulk Chlorine Decay Rate	50
5.2 Residual free Chlorine Through the Water Network	52
5.3 Analysis and Discussion	57
5.3.1 Efficiency of Chlorination Process	57
5.3.2 Chlorine Decay	67
5.3.2.1 Effect of Pipe Diameter	67
5.3.2.2 Effect of Pipe Age	69
5.4 Using EPANET	70
Chapter Six: Conclusions and Recommendations	75
6.1 Conclusions	76
6.2 Recommendations	76
References	77
Appendixes	80

List of Tables

Table	page
Table 2.1 First order decay constants of bulk chlorine	23
Table 5.1 Quality of the ground water	50
Table 5.2 Data required for measuring kb	51
Table 5.3 Selected water tracks on Kufor Malek distribution system	53
Table5.4 CL ₂ , pH and T values at different time intervals on node 1 through the tracks1& 2	54
Table 5.5 CL ₂ , pH and T values at different time intervals on node 2 through the tracks 1 &3	54
Table 5.6 CL ₂ , pH and T values at different time intervals on node 3 through the track 1	55
Table 5.7 CL ₂ , pH and T values at different time intervals on node 4 through the track 1	55
Table 5.8 CL ₂ , pH and T values at different time intervals on node 5 through the track 1	56
Table 5.9 CL ₂ , pH and T values at different time intervals on node 6 through the track 1	56
Table 5.10 CL ₂ , pH and T values at different time intervals on node 7 through the track 1	57
Table 5.11 Ranges of all measured chlorine values	66
Table 5.12 The values of free CL ₂ through track 1	68
Table 5.13 The values of free CL ₂ through track 3	69

List of Figures

Figure	page
Figure 1.1 Instruments used to find the free & total chlorine values	19
Figure 2.1 Chlorine-residual curve for breakpoint chlorination	22
Figure 2.2 Concentration of free chlorine and contact time necessary for 99% kill at 6 °C	28
Figure 2.3 Distribution of HOCl and OCl as a function of pH	29
Figure 2.4 Diagram of Membrane Filtration Method.	32
Figure 2.5 Multiple-Tube Fermentation Method.	33
Figure 4.1 Location map for Ramallah and Al-Bireh governorate	44
Figure 4.2 Well No. 6: Final Test at 330 msub ³ /h Discharge Rate (19-21 July,1999)	47
Figure 4.3 Chart of chlorination process	48
Figure 5.1 Diagram of laboratory method used in calibrating Kb	51
Figure 5.2 Chlorine decay at bulk fluid and respective first order adjustment	52
Figure 5.3 Sample locations on Kufor Malek network	53
Figure 5.4 The variation of free chlorine values through the day on node 1	57
Figure 5.5 The percentages of free Cl ₂ values on node 1	58
Figure 5.6 The values of free Cl ₂ through the day on node 2	59
Figure 5.7 The percentages of free Cl ₂ values on node 2	59
Figure 5.8 The variation of free chlorine values through the day on node 3	60
Figure 5.9 The percentages of free Cl ₂ values on node 3	60
Figure 5.10 The variation of free chlorine values through the day on node 4	61
Figure 5.11 The percentages of free Cl ₂ values on node 4	62
Figure 5.12 The variation of free chlorine values through the day on node 5	62
Figure 5.13 The percentages of free Cl ₂ values on node 5	63
Figure 5.14 The variation of free chlorine values through the day on node 6	64
Figure 5.15 The percentages of free Cl ₂ values on node 6	64
Figure 5.16 The variation of free chlorine values through the day on node 7	65
Figure 5.17 The percentages of free Cl ₂ values on node 7	66
Figure 5.18 The percentages of all measured free Cl ₂ values	76
Figure 5.19 The varying values of free Cl ₂ through track 1	68
Figure 5.20 Effect of pipe diameter on the residual chlorine	68
Figure 5.21 The varying values of free Cl ₂ through track 3	70
Figure 5.22 Effect of pipe age on the residual chlorine	70
Figure 5.23 Chlorine values according to the bulk effect	71
Figure 5.24 Concentration tie-lines of chlorine throughout the system (12 hours) Kb = -	
0.1203hour^{-1} ; Kf = 0.00 m s^{-1}	72
Figure 5.25 Simulation results for nodes 4 and 7, before and after Kf calibration	73
Figure 5.26 Concentration tie-lines of chlorine throughout the system (12 hours). Kb = -	
0.1203hour ⁻¹ ; different Kf values	74